Pearson Edexcel AS Mathematics 8MA0

Unit Test 8 Exponentials and Logarithms

Time allowed: 50 minutes

School:

Name:

Teacher:

How I can achieve better:

Question	Points	Score
1	9	
2	6	
3	4	
4	5	
5	6	
6	50	
7	Total:	5

1. The graph of $y=a b^{x}$ passes through the points $(2,400)$ and $(5,50)$.
(a) Find the values of the constants a and b.
(b) Given that $a b^{x}<k$, for some constant $k>0$, show that $x>\frac{\log \left(\frac{1600}{k}\right)}{\log (2)}$ where \log means \log to any valid base.
2.

$$
\log _{11}(2 x-1)=1-\log _{11}(x+4) .
$$

Find the value of x showing detailed reasoning.
3. (a) Sketch the graph of $y=8^{x}$ stating the coordinates of any points where the graph crosses the coordinate axes.
(b) i. Describe fully the transformation which transforms the graph $y=8^{x}$ to the graph $y=8^{x-1}$.
ii. Describe the transformation which transforms the graph $y=8^{x-1}$ to the graph $y=$ $8^{x-1}+5$.
4. Solve algebraically, showing each step of your working, the equation

$$
\left(8^{x-1}\right)^{2}-18\left(8^{x-1}\right)+32=0
$$

5. (a) Sketch the graph for $y=\log _{9}(x+a), a>0$ for $x>-a$ labelling any asymptotes and points of intersection with the x-axis or y-axis. Leave your answers in terms of a where necessary.
(b) For $x>-a$, describe, with a reason, the relationship between the graphs of $y=\log _{9}(x+a)^{2}$ and $y=\log _{9}(x+a)$.
6. The population, P, of bacteria in an experiement can be modelled by the formula $P=100 \mathrm{e}^{0.4 t}$, where t is the time in hours after the experiment began.
(a) Use the model to estimate the population of bacteria 7 hours after the experiment began.
(b) Interpret the meaning of the constant 100 in the model.
(c) How many whole hours after the experiment began does the population of bacteria first exceed 1 million, according to the model?
7. The value of a car, V in $£$, is modelled by the equation $V=a b^{t}$, where a and b are constants and t is the number of years since the car was purchased. The line l shown below illustrates the linear relationship between t and $\log _{4}(V)$ for $t \geq 0$. The line l meets the vertical axis at $\left(0, \log _{4}(40000)\right)$ as shown. The gradient of l is $-\frac{1}{10}$.

(a) Write down an equation for l.
(b) Find, in exact form, the values of a and b.
(c) With reference to the model, interpret the values of the constant a and b.
(d) Find the value of the car after 7 years.
(e) After how many years is the value of the car less than $£ 10,000$?
(f) State a limitation of the model.
(Q7 continued)
