Pearson Edexcel AS Mathematics 8MA0

Unit Test 8 Exponentials and Logarithms

Time allowed: 50 minutes

Name:

Teacher:

How I can achieve better:

- •
- •
- •

Question	Points	Score
1	9	
2	6	
3	4	
4	5	
5	8	
6	6	
7	12	
Total:	50	

- 1. The graph of $y = ab^x$ passes through the points (2, 400) and (5, 50).
 - (a) Find the values of the constants a and b.
 - (b) Given that $ab^x < k$, for some constant k > 0, show that $x > \frac{\log\left(\frac{1600}{k}\right)}{\log(2)}$ where log means log [4] to any valid base.

[5]

2.

$$\log_{11}(2x - 1) = 1 - \log_{11}(x + 4).$$

Find the value of x showing detailed reasoning.

www.CasperYC.club

- 3. (a) Sketch the graph of $y = 8^x$ stating the coordinates of any points where the graph crosses [2] the coordinate axes.
 - (b) i. Describe fully the transformation which transforms the graph $y = 8^x$ to the graph [1] $y = 8^{x-1}$.
 - ii. Describe the transformation which transforms the graph $y = 8^{x-1}$ to the graph y = [1] $8^{x-1} + 5$.

4. Solve algebraically, showing each step of your working, the equation

 $\left(8^{x-1}\right)^2 - 18\left(8^{x-1}\right) + 32 = 0.$

www.CasperYC.club

- 5. (a) Sketch the graph for $y = \log_9(x+a), a > 0$ for x > -a labelling any asymptotes and points [6] of intersection with the x-axis or y-axis. Leave your answers in terms of a where necessary.
 - (b) For x > -a, describe, with a reason, the relationship between the graphs of $y = \log_9(x+a)^2$ [2] and $y = \log_9(x+a)$.

- 6. The population, P, of bacteria in an experiment can be modelled by the formula $P = 100e^{0.4t}$, where t is the time in hours after the experiment began.
 - (a) Use the model to estimate the population of bacteria 7 hours after the experiment began. [2]
 - (b) Interpret the meaning of the constant 100 in the model.
 - (c) How many whole hours after the experiment began does the population of bacteria first [3] exceed 1 million, according to the model?

[1]

7. The value of a car, V in £, is modelled by the equation $V = ab^t$, where a and b are constants and t is the number of years since the car was purchased. The line l shown below illustrates the linear relationship between t and $\log_4(V)$ for $t \ge 0$. The line l meets the vertical axis at $(0, \log_4(40000))$ as shown. The gradient of l is $-\frac{1}{10}$.

(a) Write down an equation for l .	[2]
(b) Find, in exact form, the values of a and b .	[4]
(c) With reference to the model, interpret the values of the constant a and b .	[2]
(d) Find the value of the car after 7 years.	[1]
(e) After how many years is the value of the car less than $\pounds 10,000?$	[2]
(f) State a limitation of the model.	[1]
	Total: 12

(Q7 continued)

