Pearson Edexcel AS Mathematics 8MA0

Unit Test 7 Integration

Time allowed: 50 minutes

School:

Name:

Teacher:

How 2	Ι	can	achieve	better:

- •
- •
- •

Question	Points	Score
1	5	
2	6	
3	10	
4	5	
5	11	
6	13	
Total:	50	

1. Find

$$\int (5 - 3\sqrt{x})^2 \,\mathrm{d}x.$$

www.CasperYC.club

2. The curve with equation y = h(x) passes through the point (4, 19). Given that $h'(x) = 15x\sqrt{x} - [6]$ $\frac{40}{\sqrt{x}}$, find h(x). 3. (a) Given that

$$\int_{a}^{2a} (10 - 6x) \,\mathrm{d}x = 1,$$

find the two possible values of a.

- (b) Labelling all axes intercepts, sketch the graph of y = 10 6x for $0 \le x \le 2$.
- (c) With reference to the integral in part a and the sketch in part b, explain why the larger [2] value of a found in part a produces a solution for which the actual area under the graph between a and 2a is not equal to 1 and state whether the area is greater than 1 or smaller than 1.

Total: 10

[6]

[2]

4. The speed, $v \text{ ms}^{-1}$, of a roller coaster at time t s is given by

$$v(t) = \frac{1}{20} \left(50\sqrt{t} + 20t^2 - t^3 \right)$$

The distance, s m, travelled by the roller coaster in the first 20s is given by

$$s = \int_0^{20} v(t) \,\mathrm{d}t.$$

Find the value of s, giving your answer to 3 significant figures.

5. The graph shows part of the curve C with equation $y = -x^3 + 2x^2 + 8x$.

The curve C crosses the x-axis at the origin O and at points A and B.

(a) Using an appropriate algebraic method, find the coordinates of A and B .	[3]
(b) The finite region shown shaded is bounded by the curve C and the x-axis.	[8]
Use calculus to find the total area of the shaded region.	

Total: 11

6. The diagram shows part of curve with equation $y = x^2 - 8x + 20$ and part of the line with equation y = x + 6.

- (a) Using an appropriate algebraic method, find the coordinates of A and B. [4]
- (b) The x coordinates of A and B are denoted x_A and x_B respectively. Find the exact value of the area of the finite region bounded by the x-axis, the lines $x = x_A$ and $x = x_B$ and the line AB.
- (c) Use calculus to find the exact value of the area of the finite region bounded by the x-axis, [5] the lines $x = x_A$ and $x = x_B$ and the curve $y = x^2 - 8x + 20$.
- (d) Hence, find, to one decimal place, the area of the shaded region enclosed by the curve [2] $y = x^2 - 8x + 20$ and the line AB.

Total: 13

[2]

