Pearson Edexcel AS Mathematics 8MA0

Unit Test 7 Integration

Time allowed: 50 minutes

School:

Name:

Teacher:

How I can achieve better:

Question	Points	Score
1	5	
2	6	
3	10	
4	5	
5	11	
6	13	
Total:	50	

1. Find

$$
\int(5-3 \sqrt{x})^{2} \mathrm{~d} x .
$$

2. The curve with equation $y=\mathrm{h}(x)$ passes through the point $(4,19)$. Given that $\mathrm{h}^{\prime}(x)=15 x \sqrt{x}-$ $\frac{40}{\sqrt{x}}$, find $\mathrm{h}(x)$.
3. (a) Given that

$$
\int_{a}^{2 a}(10-6 x) \mathrm{d} x=1
$$

find the two possible values of a.
(b) Labelling all axes intercepts, sketch the graph of $y=10-6 x$ for $0 \leq x \leq 2$.
(c) With reference to the integral in part a and the sketch in part b, explain why the larger value of a found in part a produces a solution for which the actual area under the graph between a and $2 a$ is not equal to 1 and state whether the area is greater than 1 or smaller than 1.
4. The speed, $v \mathrm{~ms}^{-1}$, of a rollercoaster at time $t \mathrm{~s}$ is given by

$$
v(t)=\frac{1}{20}\left(50 \sqrt{t}+20 t^{2}-t^{3}\right)
$$

The distance, $s \mathrm{~m}$, travelled by the rollercoaster in the first 20 s is given by

$$
s=\int_{0}^{20} v(t) \mathrm{d} t
$$

Find the value of s, giving your answer to 3 significant figures.
5. The graph shows part of the curve C with equation $y=-x^{3}+2 x^{2}+8 x$.

The curve C crosses the x-axis at the origin O and at points A and B.
(a) Using an appropriate algebraic method, find the coordinates of A and B.
(b) The finite region shown shaded is bounded by the curve C and the x-axis.

Use calculus to find the total area of the shaded region.
6. The diagram shows part of curve with equation $y=x^{2}-8 x+20$ and part of the line with equation $y=x+6$.

(a) Using an appropriate algebraic method, find the coordinates of A and B.
(b) The x coordinates of A and B are denoted x_{A} and x_{B} respectively.

Find the exact value of the area of the finite region bounded by the x-axis, the lines $x=x_{A}$ and $x=x_{B}$ and the line $A B$.
(c) Use calculus to find the exact value of the area of the finite region bounded by the x-axis, the lines $x=x_{A}$ and $x=x_{B}$ and the curve $y=x^{2}-8 x+20$.
(d) Hence, find, to one decimal place, the area of the shaded region enclosed by the curve $y=x^{2}-8 x+20$ and the line $A B$.

