Pearson Edexcel AS Mathematics 8MA0

Unit Test 6 Differentiation

Time allowed: 50 minutes

School:
Name:

Teacher:

How I can achieve better:

Question	Points	Score
1	4	
2	5	
3	10	
4	9	
5	11	
6	11	
Total:	50	

1. Prove, from first principles, that the derivative of $5 x^{3}$ is $15 x^{2}$.
2. $\mathrm{f}(x)=x^{3}-4 x^{2}-35 x+20$.

Find the set of values of x for which $\mathrm{f}(x)$ is increasing.
3. A curve C has equation $y=x^{3}-x^{2}-x+2$.

The point P has x-coordinate 2 .
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x.
(b) Find the equation of the tangent to the curve C at the point P.
(c) The normal to C at P intersects the x-axis at A.

Find the coordinates of A.
4. $\mathrm{f}(x)=x^{3}-7 x^{2}-24 x+18$. Sketch the graph of the gradient function, $y=\mathrm{f}^{\prime}(x)$. Use algebraic methods to determine any points where the graph cuts the coordinate axes and mark these on the graph.

Using calculus, find the coordinates of any turning points on the graph.
5. A fish tank in the shape of a cuboid is to be made from $1600 \mathrm{~cm}^{2}$ of glass. The fish tank will have a square base of side length $x \mathrm{~cm}$, and no lid. No glass is wasted. The glass can be assumed to be very thin.
(a) Show that the volume, $V \mathrm{~cm}^{3}$, of the fish tank is given by $V=400 x-\frac{x^{3}}{4}$.
(b) Given that x can vary, use differentiation to find the maximum or minimum value of V.
(c) Justify that the value of V you found in part \mathbf{b} is a maximum.
6. Figure below shows the plan of a school running track. It consists of two straight sections, which are the opposite sides of a rectangle, and two semicircular sections, each of radius $r \mathrm{~m}$. The length of the track is 300 m and it can be assumed to be very narrow.

(a) Show that the internal area, $A \mathrm{~m}^{2}$, is given by the formula $A=300 r-\pi r^{2}$.
(b) Hence find in terms of π the maximum value of the internal area. You do not have to justify that the value is a maximum.

