Pearson Edexcel AS Mathematics 8MA0

Unit Test 4 Trigonometry

Time allowed: 50 minutes

School:
Name:

Teacher:

How I can achieve better:

Question	Points	Score
1	10	
2	10	
3	6	
4	10	
5	6	
6	5	
7	50	
Total:		

1. The diagram shows $\triangle A B C$ with $A C=8 x-3, B C=4 x-1, \angle A B C=120^{\circ}$ and $\angle A C B=15^{\circ}$.

(a) Show that the exact value of x is $\frac{9+\sqrt{6}}{20}$.
(b) Find the area of $\triangle A B C$ giving your answer to 2 decimal places.
2. The diagram shows the position of three boats, P, Q and R. Boat Q is 7 km from boat P on a bearing of 327°. Boat R is 15 km from boat P on a bearing of 041°.

(a) Find the distance between boats Q and R to 1 decimal place.
(b) Find the 3 figure bearing of boat R from boat Q.
3. Find all the solutions, in the interval $0 \leq x \leq 360^{\circ}$, to the equation

$$
8-7 \cos (x)=6 \sin ^{2}(x)
$$

giving solutions to 1 decimal place where appropriate.
4. (a) Calculate the value of $-2 \tan \left(-120^{\circ}\right)$.
(b) On the same set of axes sketch the graphs of $y=2 \sin \left(x-60^{\circ}\right)$ and $y=-2 \tan (x)$, in the interval $-180^{\circ} \leq x \leq 180^{\circ}$, showing the coordinates of points of intersection with the coordinate axes in exact form.
(c) Explain how you can use the graph to identify solutions to the equation

$$
y=2 \sin \left(x-60^{\circ}\right)+2 \tan (x)=0
$$

in the interval $-180^{\circ} \leq x \leq 180^{\circ}$.
(d) Write down the number of solutions of the above equation.
5. Find, to 1 decimal place, the values of θ in the interval $0 \leq \theta \leq 180^{\circ}$ for which

$$
4 \sqrt{3} \sin \left(3 \theta+20^{\circ}\right)=4 \cos \left(3 \theta+20^{\circ}\right)
$$

6. A teacher asks one of her students to solve the equation $2 \cos (2 x)+\sqrt{3}=0$ for $0 \leq x \leq 180^{\circ}$. The attempt is shown below.

$$
\begin{aligned}
& 2 \cos 2 x=-\sqrt{3} \\
& \cos 2 x=-\frac{\sqrt{3}}{2} \\
& 2 x=\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right) \\
& 2 x=150^{\circ} \\
& x=75^{\circ} \\
& w \text { or } x=360^{\circ}-75^{\circ}=295^{\circ} \text { so reject as out of range. }
\end{aligned}
$$

(a) Identify the mistake made by the student.
(b) Write down the correct solutions to the equation.
7. A buoy is a device which floats on the surface of the sea and moves up and down as waves pass. For a certain buoy, its height, above its position in still water, y in metres, is modelled by a sine function of the form $y=\frac{1}{2} \sin \left(180 t^{\circ}\right)$, where t is the time in seconds.
(a) Sketch a graph showing the height of the buoy above its still water level for $0 \leq t \leq 10$ showing the coordinates of points of intersection with the t-axis.
(b) Write down the number of times the buoy is 0.4 m above its still water position during the first 10 seconds.
(c) Give one reason why this model might not be realistic.
(Q7 continued)

