Pearson Edexcel AS Mathematics 8MA0

Unit Test 3 Further Algebra

Time allowed: 50 minutes

School:

Name:

Teacher:

How I can achieve better:

Question	Points	Score
1	6	
2	7	
3	8	
4	7	
5	12	
6	6	
7	50	
Total:		

1. Use the factor theorem and division to factorise $\mathrm{f}(x)$ completely.

$$
f(x)=2 x^{3}-x^{2}-13 x-6
$$

2. (a) Expand $(1+3 x)^{8}$ in ascending powers of x, up to and including the term in x^{3}, simplifying each coefficient in the expansion.
(b) Showing your working clearly, use your expansion to find, to 5 significant figures, an approximation for 1.03^{8}.
3. (a) Find the first four terms, in ascending powers of x, of the binomial expansion of $(2+p x)^{9}$.
(b) Given that the coefficient of the x^{3} term in the expansion is -84 .
i. Find the value of p.
ii. Find the numerical values for the coefficients of the x and x^{2} terms.
4. (a) Fully expand $(p+q)^{5}$.

A fair four-sided die, numbered $1,2,3$ and 4 , is rolled 5 times.
Let p represent the probability that the number 4 is rolled on a given roll and let q represent the probability that the number 4 is not rolled on a given roll.
(b) Using the first three terms of the binomial expansion from part a, or otherwise, find the probability that the number 4 is rolled at least 3 times.

Total: 7
5. $\mathrm{f}(x)=x^{3}+x^{2}+p x+q$ where p and q are constants.

Given that $\mathrm{f}(5)=0$ and $\mathrm{f}(-3)=8$.
(a) find the values of p and q.
(b) factorise $\mathrm{f}(x)$ completely.
6. Prove that, for all values of x,

$$
x^{2}+6 x+18>2-\frac{1}{2} x .
$$

7. (a) Prove that if $1+3 x^{2}+x^{3}<(1+x)^{3}$ then $x>0$.
(b) Show, by means of a counter example, that the inequality $1+3 x^{2}+x^{3}<(1+x)^{3}$ is not true for all values of x.
