Pearson Edexcel AS Mathematics 8MA0

Unit Test 3 Further Algebra

Time allowed: 50 minutes

	Question	Points	Score
School:	1	6	
Name:	2	7	
Teacher:	3	8	
	4	7	
	5	12	
	6	4	
How I can achieve better:	7	6	

٦

Total:

50

 $f(x) = 2x^3 - x^2 - 13x - 6.$

[6]

Page 1 of 7

2.	(a)	Expand $(1+3x)^8$ in ascending powers of x, up to and including the term in x^3 , simplifying	[4]
		each coefficient in the expansion.	

(b) Showing your working clearly, use your expansion to find, to 5 significant figures, an approximation for 1.03⁸.

Total: 7

3.	(a) Find the first four terms, in ascending powers of x, of the binomial expansion of $(2 + px)^9$.	[4]			
	(b) Given that the coefficient of the x^3 term in the expansion is -84 .				
	i. Find the value of p .	[2]			
ii. Find the numerical values for the coefficients of the x and x^2 terms.					
	Т	otal: 8			

4. (a) Fully expand $(p+q)^5$.

A fair four-sided die, numbered 1, 2, 3 and 4, is rolled 5 times.

Let p represent the probability that the number 4 is rolled on a given roll and let q represent the probability that the number 4 is not rolled on a given roll.

(b) Using the first three terms of the binomial expansion from part a, or otherwise, find the [5] probability that the number 4 is rolled at least 3 times.

Total: 7

[2]

[7]

[5]

Total: 12

5.	f(x)) =	x^3	+	x^2	+	px	+	q	where	p	and	q	are	constants.
----	------	-----	-------	---	-------	---	----	---	---	-------	---	-----	---	-----	------------

Given that f(5) = 0 and f(-3) = 8.

- (a) find the values of p and q.
- (b) factorise f(x) completely.

$$x^2 + 6x + 18 > 2 - \frac{1}{2}x.$$

[4]

[4]

- 7. (a) Prove that if $1 + 3x^2 + x^3 < (1+x)^3$ then x > 0.
 - (b) Show, by means of a counter example, that the inequality $1 + 3x^2 + x^3 < (1 + x)^3$ is not [2] true for all values of x.

Total: 6

