Pearson Edexcel
AS Mathematics 8MA0

Practice Paper D

Pure Mathematics

Time allowed: 2 hours

Centre:

Name:
Teacher:

Question	Points	Score
1	4	
2	5	
3	5	
4	5	
5	5	
6	5	
7	8	
8	9	
9	9	
10	10	
11	10	
12	12	
13	13	
Total:	100	

1.

$$
\mathrm{f}(x)=x^{3}-3 x-2 .
$$

The figure below shows a sketch of part of the curve with equation $y=\mathrm{f}(x)$.

(a) On a separate set of axes, sketch the curve with equation $y=\mathrm{f}(2 x)$ showing the location and coordinates of the images of points A, B, C and D.
(b) On a separate set of axes, sketch the curve with equation $y=\mathrm{f}(-x)$ showing the location and coordinates of the images of points A, B, C and D.
\qquad
2. Find

$$
\int(5-3 \sqrt{x})^{2} \mathrm{~d} x
$$

3. Solve algebraically, showing each step of your working, the equation

$$
\left(8^{x-1}\right)^{2}-18\left(8^{x-1}\right)+32=0
$$

4. A buoy is a device which floats on the surface of the sea and moves up and down as waves pass. For a certain buoy, its height, above its position in still water, y in metres, is modelled by a sine function of the form $y=\frac{1}{2} \sin \left(180 t^{\circ}\right)$, where t is the time in seconds.
(a) Sketch a graph showing the height of the buoy above its still water level for $0 \leq t \leq 10$ showing the coordinates of points of intersection with the t-axis.
(b) Write down the number of times the buoy is 0.4 m above its still water position during the first 10 seconds.
(c) Give one reason why this model might not be realistic.
\qquad
5.

$$
\mathrm{f}(x)=x^{3}-4 x^{2}-35 x+20
$$

Find the set of values of x for which $\mathrm{f}(x)$ is increasing.
\qquad
6. The speed, $v \mathrm{~ms}^{-1}$, of a rollercoaster at time $t \mathrm{~s}$ is given by

$$
v(t)=\frac{1}{20}\left(50 \sqrt{t}+20 t^{2}-t^{3}\right), \quad \text { where } \quad 0 \leq t \leq 20
$$

The distance, $s \mathrm{~m}$, travelled by the rollercoaster in the first 20 s is given by $s=\int_{0}^{20} v(t) \mathrm{d} t$. Find the value of s, giving your answer to 3 significant figures.
7.

$$
\mathrm{f}(x)=x^{2}-(k+8) x+(8 k+1) .
$$

(a) Find the discriminant of $\mathrm{f}(x)$ in terms of k giving your answer as a simplified quadratic.
(b) If the equation $\mathrm{f}(x)=0$ has two equal roots, find the possible values of k.
(c) Show that when $k=8, \mathrm{f}(x)>0$ for all values of x.
\qquad

8．The equations of two circles are $x^{2}+10 x+y^{2}-12 y=3$ and $x^{2}-6 x+y^{2}-2 q y=9$ ．
（a）Find the centre and radius of each circle，giving your answers in terms of q where necessary．
（b）Given that the distance between the centres of the circles is $\sqrt{80}$ ，find the two possible values of q ．
\qquad
\qquad \square 固四嗃
9. The graph of $y=a b^{x}$ passes through the points $(2,400)$ and $(5,50)$.
(a) Find the values of the constants a and b.
(b) Given that $a b^{x}<k$, for some constant $k>0$, show that

$$
x>\frac{\log \left(\frac{1600}{k}\right)}{\log (2)}
$$

where \log means \log to any valid base.
\qquad
\qquad \square 回北
(Q9 continued)
\qquad
10. (a) Calculate the value of $-2 \tan \left(-120^{\circ}\right)$.
(b) On the same set of axes sketch the graphs of $y=2 \sin \left(x-60^{\circ}\right)$ and $y=-2 \tan (x)$, in the interval $-180^{\circ} \leq x \leq 180^{\circ}$, showing the coordinates of points of intersection with the coordinate axes in exact form.
(c) Explain how you can use the graph to identify solutions to the equations

$$
y=2 \sin \left(x-60^{\circ}\right)+2 \tan (x)=0, \quad-180^{\circ} \leq x \leq 180^{\circ} .
$$

(d) Write down the number of solutions of the above equation.
(Q10 continued)
\qquad
11. A curve C has equation $y=x^{3}-x^{2}-x+2$.

The point P has x-coordinate 2 .
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x.
(b) Find the equation of the tangent to the curve C at the point P.
(c) The normal to C at P intersects the x-axis at A. Find the coordinates of A.
\qquad
(Q11 continued)
\qquad

12.

$$
\mathrm{f}(x)=x^{3}+x^{2}+p x+q,
$$

where p and q are constants. Given that $\mathrm{f}(5)=0$ and $\mathrm{f}(-3)=8$,
(a) find the values of p and q,
(b) factorise $\mathrm{f}(x)$ completely.
(Q12 continued)
\qquad
\longrightarrow 回品
13. $O A C B$ is a parallelogram. $\overrightarrow{O A}=a$ and $\overrightarrow{O B}=b$.

The points M, S, N and T divide $O B, B C, C A$ and $A O$ in the ratio 1:4 respectively.
The lines $S T$ and $M N$ intersect at the point D.

(a) Express $\overrightarrow{M N}$ in terms of a and b.
(b) Express $\overrightarrow{S T}$ in terms of a and b.
(c) Show that the lines $M N$ and $S T$ bisect one another.
\qquad
(Q13 continued)
\qquad

