SURDS

[ESTIMATED TIME: 75 minutes]

1	1. [2 marks]
	L ,

Express $\sqrt{98}$ in the form $a\sqrt{b}$ where a and b are integers and a > 1.

.....

2. [3 marks]

Express $\sqrt{48} + \sqrt{108}$ in the form $k\sqrt{6}$ where k is a surd.

[2 marks

Show that $\sqrt{27} + \sqrt{147}$ can be expressed in the form $a\sqrt{b}$, where a and b are integers.

(2)

3.

Simplify
$$(7 + 2\sqrt{50})(5 - 2\sqrt{2})$$

Give your answer in the form $a+b\sqrt{18}$ where a and b are integers. Show your working clearly.

5. [3 marks]

Show that $(6 - \sqrt{8})^2 = 44 - 24\sqrt{2}$

Show each stage of your working clearly.

(a) Show that $\sqrt{48} + \sqrt{108}$ can be expressed in the form $a\sqrt{b}$, where a and b are integers.

(2)

(b) Show that $(5 - \sqrt{12})(6 - \sqrt{3}) = 36 - 17\sqrt{3}$ Show each stage of your working.

(2)

[3 marks]

Show that $\frac{\sqrt{3} + \sqrt{27}}{\sqrt{2}}$ can be expressed in the form \sqrt{k} where k is an integer.

State the value of k.

7.

k =

(a) Show that $(3 + 2\sqrt{2})(4 - \sqrt{2}) = 8 + 5\sqrt{2}$ Show your working clearly.

(b) Rationalise the denominator and simplify fully $\frac{10 + 3\sqrt{2}}{\sqrt{2}}$

Show your working clearly.

(2)

(2)

9. [2 marks]

 $\frac{12}{\sqrt{8}} = 3\sqrt{2}$ Show that

(a) Expand $(5 + 3\sqrt{2})^2$

Give your answer in the form $(a + b\sqrt{2})$, where a and b are integers. Show your working clearly.

(b) $(5 + 3\sqrt{2})^2 = p + \frac{q}{\sqrt{8}}$, where p and q are integers. Find the value of q.

Given that $(5 - \sqrt{x})^2 = y - 20\sqrt{2}$ where x and y are positive integers, find the value of x and the value of y.

$$v =$$

12. [3 marks]

 $(3+\sqrt{a})(4+\sqrt{a}) = 17+k\sqrt{a}$ where a and k are positive integers.

Find the value of a and the value of k.

13. [3 marks]

A trapezium ABCD has an area of $5\sqrt{6}$ cm².

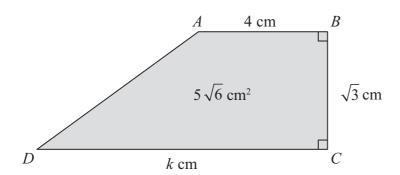


Diagram **NOT** accurately drawn

$$AB = 4$$
 cm.
 $BC = \sqrt{3}$ cm.
 $DC = k$ cm.

Calculate the value of k, giving your answer in the form $a \sqrt{b} - c$ where a, b and c are positive integers. Show each step in your working.

k =.....

(a) Show that $(5 - \sqrt{8})(7 + \sqrt{2}) = 31 - 9\sqrt{2}$ Show each stage of your working.

(3)

Given that c is a prime number,

(b) rationalise the denominator of $\frac{3c - \sqrt{c}}{\sqrt{c}}$ Simplify your answer.

(2)

$$\left(\sqrt{a} + \sqrt{8a}\right)^2 = 54 + b\sqrt{2}$$

a and b are positive integers. Find the value of a and the value of b. Show your working clearly.

=	
	=

16. [3 marks]

 $(a + \sqrt{b})^2 = 49 + 12\sqrt{b}$ where a and b are integers, and b is prime.

Find the value of a and the value of b

17. [3 marks]

Simplify fully
$$\frac{(6 - \sqrt{5})(6 + \sqrt{5})}{\sqrt{31}}$$

You must show your working.

Express $\frac{\sqrt{18+10}}{\sqrt{2}}$ in the form $p+q\sqrt{2}$, where p and q are integers.

Show clear working out.

19. [4 marks]

Rationalise the denominator and simplify fully $\frac{33}{4+\sqrt{5}}$

Show clear working out.

Express $\frac{39}{4-\sqrt{3}}$ in the form $a+b\sqrt{3}$, where a and b are integers

Show clear working out.

21. [4 marks]

Simplify $\frac{7-\sqrt{5}}{2+\sqrt{5}}$, giving your answer in the form $a+b\sqrt{5}$, where a and b are integers.

Show clear working out.

22. [4 marks]

Show that $\frac{3}{\sqrt{27}-\sqrt{18}}$ can be written in the form $\sqrt{m}+\sqrt{n}$, where m and n are integers.

(4)

23. [4 marks]

Show that $\frac{16}{\sqrt{2}} - \sqrt{8} = 6\sqrt{2}$

(4)