1	[2 n	norkel
1		mai Ks _j

$$S = \{c, h, i, n, a\}$$

$$V = \{i, t, a, l, y\}$$

List the elements of the set

(i)
$$S \cap V$$

(ii)
$$S \cup V$$

•••••	•••••	

2. [4 marks]

- $A = \{\text{Prime numbers between 10 and 16}\}\$
- $B = \{Multiples of 3 between 10 and 16\}$
- (a) List the members of $A \cup B$.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				
																																			1	1)	1

(b) What is $A \cap B$?

(c) Is it true that $11 \in B$?

.....

Explain your answer.

.....

(1)

$$A = \{2, 4, 6, 8, 10, 12, 14\}$$

$$B = \{1, 3, 5, 7, 9, 11, 13\}$$

$$C = \{3, 6, 9, 12\}$$

- (a) List the members of the set
 - (i) $A \cap C$

	(2)

(b) Explain why $A \cap B = \emptyset$

(1)

[3 marks

4.

(a)
$$S = \{1, 3, 5, 7\}$$

 $T = \{2, 3, 7, 11\}$

How many members are there in $S \cup T$?

(b)
$$U = \{3, 4, 5\}$$

 $U \cup V = \{1, 2, 3, 4, 5\}$

The set V has as few members as possible. List the members of the set V.

Describe the members of $A \cap B$.

5. [3 marks]

(a)	A =	$\{s,$	u,	p,	e, r	:}			
	B =	{c,	0,	m,	p,	u,	t,	e,	r}

List the members of the set

(ii)
$$A \cup B$$

(b)
$$X = \{\text{prime numbers}\}\$$

 $Y = \{\text{factors of } 12\}$

Is it true that $X \cap Y = \emptyset$?

Tick (\checkmark) the appropriate box.

Explain your answer.

(1)

[4 marks

 $\mathcal{E} = \{ \text{even numbers less than } 19 \}$

 $M = \{\text{multiples of 3}\}\$

 $F = \{\text{factors of } 12\}$

6.

.....

(ii) List the members of M.

(2)

(b) List the members of $M \cap F$.

(2)

 $\mathscr{E} = \{ \text{odd numbers} \}$

 $A = \{1, 5, 9, 13, 17\}$

 $B = \{1, 9, 17, 25, 33\}$

 $C = \{7, 11, 15\}$

- (a) List the members of the set
 - (i) $A \cap B$,

.....

(ii) $A \cup B$.

(2)

(b) Explain why $A \cap C = \emptyset$

.....

(1)

8. [3 marks

 \mathscr{E} = {even numbers}

$$A = \{2, 4, 6, 8, 10\}$$

(a) *B* is a set such that $A \cap B = \{4, 8\}$ The set *B* has 3 members.

List the members of one possible set B.

(2)

(b) C is a set such that $A \cap C = \emptyset$ The set C has 3 members.

List the members of one possible set *C*.

(1)

 $\mathcal{E} = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

 $A = \{ \text{odd numbers} \}$

 $P = \{ prime numbers \}$

List the members of the set

(i) $A \cap P$,

(ii) $A \cup P$.

[3 marks]

 \mathcal{E} = {positive whole numbers less than 19}

 $A = \{ odd numbers \}$

10.

 $B = \{\text{multiples of 5}\}\$

 $C = \{\text{multiples of 4}\}\$

(a) List the members of the set

(i) $A \cap B$

.....

(ii) $B \cup C$

(2)

 $D = \{\text{prime numbers}\}\$

(b) Is it true that $B \cap D = \emptyset$?

Tick (\checkmark) the appropriate box.

Yes No

Explain your answer.

(1)

11. [2 marks

 $\mathscr{E} = \{\text{even numbers}\}$

 $A = \{ \text{factors of } 8 \}$

 $B = \{\text{factors of } 20\}$

List the members of $A \cap B$

[4 marks]

(a) \mathscr{E} = {Students in Year 12}

12.

 $G = \{ \text{Students who study German} \}$

 $F = \{ \text{Students who study French} \}$

 $M = \{ \text{Students who study Maths} \}$

(i) $G \cap M = \emptyset$

Use this information to write a statement about the students who study German in Year 12

(ii) Preety is a student in Year 12 Preety $\notin F$.

Use this information to write a statement about Preety.

(2)

(b)
$$A = \{2, 4, 6, 8, 10\}$$

 $A \cap B = \{2, 4\}$
 $A \cup B = \{1, 2, 3, 4, 6, 8, 10\}$

List all the members of set *B*.

(a) $A = \{2, 3, 4, 5\}$

$$B = \{4, 5, 6, 7\}$$

(i) List the members of $A \cap B$.

.....

(ii) How many members are in $A \cup B$?

(b) $\mathcal{E} = \{3, 4, 5, 6, 7\}$

$$P = \{3, 4, 5\}$$

Two other sets, Q and R, each contain exactly three members.

$$P \cap Q = \{3, 4\}$$

$$P \cap R = \{3, 4\}$$

Set Q is not the same as set R.

(i) Write down the members of a possible set Q.

.....

(ii) Write down the members of a possible set R.

(2)

14.

[4 marks]

(a) $A = \{1, 2, 3, 4\}$ $B = \{2, 4, 6, 8\}$

Write down the members of $A \cup B$.

(2)

(b) $\mathcal{E} = \{\text{Positive integers less than } 10\}$

$$P = \{3, 4, 5, 6, 7, 8\}$$

$$P \cap Q = \emptyset$$

Write down all the possible members of Q.

......

 $\mathcal{E} = \{\text{Clothes}\}\$

 $A = \{Mr \text{ Smith's clothes}\}\$

 $B = \{\text{Hats}\}$

 $C = \{Mrs Koshi's hats\}$

(a) (i) Describe the members of the set $A \cap B$

.....

(ii) How many members has the set $A \cap C$?

(2)

(b)

Use a letter or symbol from the box to make each of the following a true statement.

(i) $B \cup C =$

(ii) Mr Smith's favourite shirt A

(2)

16. [3 marks]

$$\mathcal{E} = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

 $P = \{2, 3, 5, 7\}$

(a) List the members of P'

(1)

The set Q satisfies both the conditions $Q \subset P$ and n(Q) = 3

(b) List the members of **one** set Q which satisfies both these conditions.

(2)

$$\mathscr{E} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$A = \{1, 2, 3, 4, 5, 6\}$$

$$B = \{ odd numbers \}$$

(a) List the members of $A \cup B$

	(d)
	/ II \

C is a set such that $A \cap C = \{4, 5\}$

The set *C* has 4 members.

(b) List the members of one possible set C

																	((2)	,))												

18. [3 marks]

 \mathscr{E} = {positive whole numbers **less than** 13}

 $A = \{\text{even numbers}\}\$

 $B = \{\text{multiples of 3}\}\$

 $C = \{\text{prime numbers}\}\$

(a) List the members of the set

(i) $A \cap B$

(ii) $B \cup C$

(b) Is it true that $14 \in A$?

Tick (\checkmark) the appropriate box.

Explain your answer.

$$\mathcal{E} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

- $A = \{\text{even numbers}\}\$
- $B = \{\text{multiples of 3}\}\$
- (a) List the members of set B.

	(1))

(b) Find $A \cup B$

(c) Find $A \cap B$

x is a member of \mathscr{E}

- $x \in B$
- $x \not\in A$
- (d) What are the possible values of x?

