1.

The mass of $4 \mathrm{~m}^{3}$ of copper is 35800 kg .
Calculate the density of the copper.
$\mathrm{kg} / \mathrm{m}^{3}$
(2)
2.

The density of steel is $8050 \mathrm{~kg} / \mathrm{m}^{3}$.
Work out the mass of $5 \mathrm{~m}^{3}$ of steel.
3.

A gold chain has a volume of $4 \mathrm{~cm}^{3}$.
The density of gold is 19.3 grams per cm^{3}.
Calculate the mass of the gold chain.

The mass of a standard gold bar is 1000 grams.
The density of gold is 19.3 grams per cm^{3}.
Work out the volume of a standard gold bar.
cm^{3}

(2)

5.

Diagram NOT
accurately drawn

The diagram shows a solid wooden block in the shape of a cuboid.
The block is made from wood with density $0.58 \mathrm{~g} / \mathrm{cm}^{3}$
Work out the mass of the block.

The density of concrete is $2.4 \mathrm{~g} / \mathrm{cm}^{3}$.
Work out the mass of a concrete slab which has a volume of $12 \mathrm{~m}^{3}$.
Give your answer in kilograms.

The diagram shows a solid triangular prism.

Diagram NOT
accurately drawn

The prism is made from steel.
The density of the steel is 7.9 grams per cm^{3}.
Calculate the mass of the prism.
Give your answer in kilograms, correct to 3 significant figures.

The diagram shows a solid rubber ball in the shape of a sphere.

accurately drawn

The radius of the ball is 5 cm .
The mass of the ball is 550 grams.
An object will only float in water if its density is less than $1.0 \mathrm{~g} / \mathrm{cm}^{3}$.
Will this rubber ball float in water?
You must show clear calculations to justify your answer.

The diagram shows a steel girder in the shape of a prism.

The length of the girder is 180 cm .
The cross sectional area of the girder is $18 \mathrm{~cm}^{2}$.
The steel has a density $7.8 \mathrm{~g} / \mathrm{cm}^{3}$.
Justin has a pickup truck.
The maximum load that Justin's truck can carry is 500 kg .
Find the maximum number of these steel girders that Justin can carry in his truck, without exceeding the maximum load.
. 200 g of aluminium and 200 g of copper are mixed to make 400 g of an alloy.
Aluminium has a density of $2.7 \mathrm{~g} / \mathrm{cm}^{3}$.
Copper has a density of $8.9 \mathrm{~g} / \mathrm{cm}^{3}$.
Work out the density of the alloy.
$\mathrm{g} / \mathrm{cm}^{3}$

Liquid A has a density of $0.7 \mathrm{~g} / \mathrm{cm}^{3}$.
Liquid B has a density of $1.6 \mathrm{~g} / \mathrm{cm}^{3}$.
140 g of liquid A and 128 g of liquid B are mixed to make liquid C .
Work out the density of liquid C.

Brass is an alloy which is made by mixing copper and zinc.
Copper has a density of $8.9 \mathrm{~g} / \mathrm{cm}^{3}$.
Zinc has a density of $7.1 \mathrm{~g} / \mathrm{cm}^{3}$.

1 kilogram of brass is made by mixing 630 g of copper with 370 g of zinc.
Work out the density of the brass.
Give your answer correct to 1 decimal place.
\qquad $\mathrm{g} / \mathrm{cm}^{3}$

One sheet of A4 paper has dimensions 21.0 cm by 29.7 cm .
The paper has a mass of 80 g per m^{2}.
Work out the total mass of 500 sheets of A4 paper.
Give your answer in kilograms, correct to 3 significant figures.

- Mia makes an orange drink by mixing orange concentrate with water.

She mixes 15 ml of orange concentrate with 200 ml of water.
The density of the orange concentrate is $1.24 \mathrm{~g} / \mathrm{cm}^{3}$.
The density of water is $1.00 \mathrm{~g} / \mathrm{cm}^{3}$.
Work out the density of Mia's drink.
Give your answer correct to 2 decimal places.
$\mathrm{g} / \mathrm{cm}^{3}$
15.
[4 marks]
The density of apple juice is 1.05 grams per cm^{3}.
The density of fruit syrup is 1.4 grams per cm^{3}.
The density of carbonated water is 0.99 grams per cm^{3}.
$25 \mathrm{~cm}^{3}$ of apple juice are mixed with $15 \mathrm{~cm}^{3}$ of fruit syrup and $280 \mathrm{~cm}^{3}$ of carbonated water to make a drink with a volume of $320 \mathrm{~cm}^{3}$.
Work out the density of the drink.
Give your answer correct to 2 decimal places.

The densities of two different liquids A and B are in the ratio $11: 9$
The mass of 1 ml of liquid B is 1.2 g .
10 ml of liquid A is mixed with 20 ml of liquid B to make 30 ml of liquid C.
Work out the density of liquid C.
$\mathrm{g} / \mathrm{cm}^{3}$
17.
. A solid snooker ball is made in the shape of a sphere.
The ball has a mass of 156 g measured to the nearest gram.
Its diameter is 57 mm measured to the nearest millimetre.
Find the lower bound for the density of the ball.
Give your answer correct to 3 significant figures.
$\mathrm{g} / \mathrm{cm}^{3}$
. A solid metal bar is made in the shape of a cuboid.

Diagram NOT
accurately drawn

The cross-section of the bar is a square of side $x \mathrm{~cm}$.
The length of the bar is $y \mathrm{~cm}$.
The mass of the bar is $M \mathrm{~kg}$.
$x=5.0$ correct to 1 decimal place.
$y=25$ correct to the nearest whole number.
$M=4.24$ correct to 2 decimal places.
Calculate the density of the metal, in $\mathrm{g} / \mathrm{cm}^{3}$, that was used to make the bar.
Give your answer to an appropriate degree of accuracy.

A solid cone is made of wood.

Diagram NOT
accurately drawn

The height of the cone is 18 cm .
The mass of the cone is 0.98 kg
The wood has a density of $0.43 \mathrm{~g} / \mathrm{cm}^{3}$
Find the radius of the cone.
Give your answer correct to 2 significant figures.

A solid sphere is made of glass.

Diagram NOT
accurately drawn

The mass of the sphere is 58.4 g
The density of the glass is $2.6 \mathrm{~g} / \mathrm{cm}^{3}$
Find the diameter of the sphere.
Give your answer correct to 3 significant figures.

A solid cube has a mass of 9.8 g .
It has a density of $0.92 \mathrm{~g} / \mathrm{cm}^{3}$.
Find the surface area of the cube.
Give your answer correct to 2 significant figures.
\qquad cm^{2}

A squash ball is made of rubber and is the shape of a sphere.

Diagram NOT
accurately drawn

The mass of the ball 24 g .
The external diameter of the ball is 40 mm .
The thickness of the rubber is 4 mm .
Assuming that the mass of air inside the ball is negligible, calculate the density of the rubber.
\qquad $\mathrm{g} / \mathrm{cm}^{3}$

A 200 gallon steam kettle is used to make soup.
The kettle is in the shape of a cylinder.

Diagram NOT
accurately drawn

The kettle has a diameter of 1.2 m .

The depth of the soup in the kettle is 67 cm .
The density of the soup is $1.15 \mathrm{~g} / \mathrm{cm}^{3}$.
The soup is to be dispensed into tins that hold 400 g of soup each.
How many tins can be filled with the soup from the kettle?
You must show all your working.
\qquad

