## Pearson Edexcel

## A Level Mathematics 9MA0

## Unit Test

| 9 Numerical I | Methods |
|---------------|---------|
|---------------|---------|

Time allowed: 50 minutes

**School:** 

Name:

Teacher:

| Question | Points | Score |
|----------|--------|-------|
| 1        | 7      |       |
| 2        | 5      |       |
| 3        | 7      |       |
| 4        | 10     |       |
| 5        | 10     |       |
| 6        | 11     |       |
| Total:   | 50     |       |



- 1.  $f(x) = x^4 8x^2 + 2$ .
  - (a) Show that the equation f(x) = 0 can be written as

[2]

$$x = \sqrt{ax^4 + b}, x > 0$$

where a and b are constants to be found.

(b) Let  $x_0 = 1.5$ . Use the iteration formula

[2]

$$x_{n+1} = \sqrt{ax_n^4 + b}$$

together with your values of a and b from part (a), to find, to 4 decimal places, the values of  $x_1, x_2, x_3$  and  $x_4$ .

A root of f(x) = 0 is  $\alpha$ .

(c) By choosing a suitable interval, prove that  $\alpha = -2.782$  to 3 decimal places.

[3]



2.

$$g(x) = 3\sin\left(\frac{x}{6}\right)^3 - \frac{1}{10}x - 1, -40 < x < 20,$$

x is in radians.

(a) Show that the equation g(x) = 0 can be written as

[2]

$$x = 6\left(\sqrt[3]{\arcsin\left(\frac{1}{3} + \frac{1}{30}x\right)}\right)$$

(b) Using the formula

$$x_{n+1} = 6\left(\sqrt[3]{\arcsin\left(\frac{1}{3} + \frac{1}{30}x_n\right)}\right),\,$$

with  $x_0 = 4$ , find to 3 decimal places, the values of  $x_1, x_2$  and  $x_3$ .



- 3.  $f(x) = 2 3\sin^3(x) \cos(x)$ , where x is in radians.
  - (a) Show that f(x) = 0 has a root  $\alpha$  between x = 1.9 and x = 2.0.

- [2]
- (b) Using  $x_0 = 1.95$  as a first approximation, apply the Newton-Raphson procedure once to f(x) to find a second approximation to  $\alpha$ , giving your answer to 3 decimal places.

Last updated: June 10, 2020



- 4.  $g(x) = \frac{2}{x-1} e^x$ 
  - (a) By drawing an appropriate sketch, show that there is only one solution to the equation g(x) = 0.

[2]

- (b) Show that the equation g(x) = 0 may be written in the form  $x = 2e^{-x} + 1$
- [2]

(c) Let  $x_0 = 1.5$ .

[2]

Use the iterative formula to find to 4 decimal places the values of  $x_1, x_2, x_3$  and  $x_4$ .

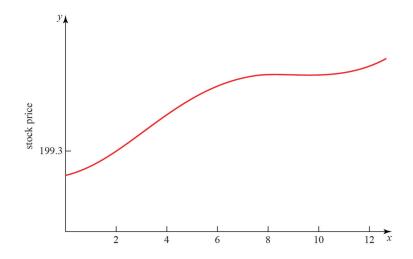
(d) Using  $x_0 = 1.5$  as a first approximation, apply the Newton-Raphson procedure once to g(x) [4] to find a second approximation to  $\alpha$ , giving your answer to 4 decimal places.



5.

$$h(t) = 40 \ln(t+1) + \sin\left(\frac{t}{5}\right) - \frac{1}{4}t^2, \quad t \ge 0$$

The graph y = h(t) models the height of a rocket t seconds after launch.


- (a) Show that the rocket returns to the ground between 19.3 and 19.4 seconds after launch. [2]
- (b) Using  $t_0 = 19.35$  as a first approximation to  $\alpha$ , apply the Newton-Raphson procedure once [5] to h(t) to find a second approximation to  $\alpha$ , giving your answer to 3 decimal places.
- (c) By considering the change of sign of h(t) over an appropriate interval, determine if your answer to part (b) is correct to 3 decimal places.

Last updated: June 10, 2020



6.

$$p(t) = \frac{1}{10}\ln(t+1) - \cos\left(\frac{t}{2}\right) + \frac{1}{10}t^{\frac{3}{2}} + 199.3, \qquad 0 \le t \le 12$$



- (a) Above is a graph of the price of a stock during a 12-hour trading window. The equation of the curve is given above. Show that the price reaches a local maximum in the interval 8.5 < t < 8.6.
- (b) Above shows that the price reaches a local minimum between 9 and 11 hours after trading begins. Using the Newton-Raphson procedure once and taking  $t_0 = 9.9$  as a first approximation, find a second approximation of when the price reaches a local minimum.

Last updated: June 10, 2020

Total: 11

[5]

