Pearson Edexcel

A Level Mathematics 9MA0

Unit Test
 9 Numerical Methods

Time allowed: 50 minutes

School:

Name:
Teacher:

Question	Points	Score
1	7	
2	5	
3	7	
4	10	
5	10	
6	11	
Total:	50	

1. $f(x)=x^{4}-8 x^{2}+2$.
(a) Show that the equation $f(x)=0$ can be written as

$$
x=\sqrt{a x^{4}+b}, x>0
$$

where a and b are constants to be found.
(b) Let $x_{0}=1.5$. Use the iteration formula

$$
x_{n+1}=\sqrt{a x_{n}^{4}+b}
$$

together with your values of a and b from part (a), to find, to 4 decimal places, the values of x_{1}, x_{2}, x_{3} and x_{4}.

A root of $f(x)=0$ is α.
(c) By choosing a suitable interval, prove that $\alpha=-2.782$ to 3 decimal places.
2.

$$
g(x)=3 \sin \left(\frac{x}{6}\right)^{3}-\frac{1}{10} x-1,-40<x<20
$$

x is in radians.
(a) Show that the equation $g(x)=0$ can be written as

$$
x=6\left(\sqrt[3]{\arcsin \left(\frac{1}{3}+\frac{1}{30} x\right)}\right)
$$

(b) Using the formula

$$
x_{n+1}=6\left(\sqrt[3]{\arcsin \left(\frac{1}{3}+\frac{1}{30} x_{n}\right)}\right)
$$

with $x_{0}=4$, find to 3 decimal places, the values of x_{1}, x_{2} and x_{3}.
3. $f(x)=2-3 \sin ^{3}(x)-\cos (x)$, where x is in radians.
(a) Show that $f(x)=0$ has a root α between $x=1.9$ and $x=2.0$.
(b) Using $x_{0}=1.95$ as a first approximation, apply the Newton-Raphson procedure once to $f(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
4. $g(x)=\frac{2}{x-1}-\mathrm{e}^{x}$
(a) By drawing an appropriate sketch, show that there is only one solution to the equation $g(x)=0$.
(b) Show that the equation $g(x)=0$ may be written in the form $x=2 \mathrm{e}^{-x}+1$
(c) Let $x_{0}=1.5$.

Use the iterative formula to find to 4 decimal places the values of x_{1}, x_{2}, x_{3} and x_{4}.
(d) Using $x_{0}=1.5$ as a first approximation, apply the Newton-Raphson procedure once to $g(x)$ to find a second approximation to α, giving your answer to 4 decimal places.
5.

$$
h(t)=40 \ln (t+1)+\sin \left(\frac{t}{5}\right)-\frac{1}{4} t^{2}, \quad t \geq 0
$$

The graph $y=h(t)$ models the height of a rocket t seconds after launch.
(a) Show that the rocket returns to the ground between 19.3 and 19.4 seconds after launch.
(b) Using $t_{0}=19.35$ as a first approximation to α, apply the Newton-Raphson procedure once to $h(t)$ to find a second approximation to α, giving your answer to 3 decimal places.
(c) By considering the change of sign of $h(t)$ over an appropriate interval, determine if your answer to part (b) is correct to 3 decimal places.
6.

$$
p(t)=\frac{1}{10} \ln (t+1)-\cos \left(\frac{t}{2}\right)+\frac{1}{10} t^{\frac{3}{2}}+199.3, \quad 0 \leq t \leq 12
$$

(a) Above is a graph of the price of a stock during a 12-hour trading window. The equation of the curve is given above. Show that the price reaches a local maximum in the interval $8.5<t<8.6$.
(b) Above shows that the price reaches a local minimum between 9 and 11 hours after trading begins. Using the Newton-Raphson procedure once and taking $t_{0}=9.9$ as a first approximation, find a second approximation of when the price reaches a local minimum.

Total: 11

