Pearson Edexcel

A Level Mathematics 9MA0

Unit Test
8 Differentiation

Time allowed: 50 minutes

School:

Name:
Teacher:

Question	Points	Score
1	6	
2	8	
3	6	
4	5	
5	5	
6	8	
7	6	
8	2	
9	4	
Total:	50	

1. (a) Given that $f(x)=\sin (x)$, show that

$$
f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\left(\frac{\cos (h)-1}{h}\right) \sin (x)+\frac{\sin (h)}{h} \cos (x)\right)
$$

(b) Hence prove that $f^{\prime}(x)=\cos (x)$.
2. A toy soldier is connected to a parachute. The soldier is thrown into the air from ground level. The height, in metres, of the soldier above the ground can be modelled by the equation

$$
H=\frac{4 t^{\frac{2}{3}}}{t^{2}+1} \quad 0 \leq t \leq 6 s
$$

where H is height of the soldier above the ground and t is the time since the soldier was thrown.
(a) Show that

$$
\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{8\left(1-2 t^{2}\right)}{3 \sqrt[3]{t}\left(t^{2}+1\right)^{2}}
$$

(b) Using the differentiated function, explain whether the soldier was increasing or decreasing in height after 2 seconds.
(c) Find the exact time when the soldier reaches a maximum height.
3. A curve has the equation

$$
y=\ln (3 x)-\mathrm{e}^{-2 x}
$$

Show that the equation of the tangent at the point with an x-coordinate of 1 is

$$
y=\left(\frac{\mathrm{e}^{2}+2}{\mathrm{e}^{2}}\right) x-\left(\frac{\mathrm{e}^{2}+3}{\mathrm{e}^{2}}\right)+\ln (3)
$$

4. Given that $x=\sec (4 y)$, find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of y.
(b) Show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k}{x \sqrt{x^{2}-1}}
$$

where k is a constant which should be found.
5. A curve C has equation $4^{x}=2 x y$ for $x>0$.

Find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point C with coordinates $(2,4)$.
6. A curve has parametric equations

$$
x=\cos (2 t), \quad \text { and } \quad y=\sin (t), \quad-\pi \leq t \leq \pi .
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.

Leave your answer as a single trigonometric ratio.
(b) Find an equation of the normal to the curve at the point A where $t=-\frac{5 \pi}{6}$.
7. The curve C has equation $y=x^{3}+6 x^{2}-12 x+6$.
(a) Show that C is concave on the interval $[-5,-3]$.
(b) Find the coordinates of the point of inflection.
8. In a rainforest, the area covered by trees, F, has been measured every year since 1990 .

It was found that the rate of loss of trees is proportional to the remaining area covered by trees. Write down a differential equation relating F to t, where t is the numbers of years since 1990 .
9. The volume of a sphere $V \mathrm{~cm}^{3}$ is related to its radius $r \mathrm{~cm}$ by the formula $V=\frac{4}{3} \pi r^{3}$.

The surface area of the sphere is also related to the radius by the formula $S=4 \pi r^{2}$.
Given that the rate of decrease in surface area, in $\mathrm{cm}^{2} \mathrm{~s}^{-1}$, is $\frac{\mathrm{d} S}{\mathrm{~d} t}=-12$, find the rate of decrease of volume $\frac{d V}{d t}$.

