Pearson Edexcel

A Level Mathematics 9MA0

Unit Test

7 Parametric Equations

Time allowed: 50 minutes

School:

Name:
Teacher:

Question	Points	Score
1	8	
2	4	
3	8	
4	14	
5	9	
6	7	
Total:	50	

1. C has parametric equations

$$
x=\frac{1+4 t}{1-t}, y=\frac{2+b t}{1-t}, \quad-1 \leq t \leq 0
$$

(a) Show that the cartesian equation of C is

$$
y=\left(\frac{2+b}{5}\right) x+\left(\frac{8-b}{5}\right)
$$

over an appropriate domain.

Given that C is a line segment and that the gradient of the line is -1 ,
(b) show that the length of the line segment is $a \sqrt{2}$, where a is a rational number to be found.
2. A curve C has parametric equations

$$
x=\sec ^{2}(t)+1, \quad \text { and } \quad t=2 \sin (t), \quad-\frac{\pi}{4} \leq t \leq \frac{\pi}{4}
$$

Show that a cartesian equation of C is

$$
t=\sqrt{\frac{8-4 x}{1-x}}
$$

for a suitable domain which should be stated.
3. The curve C has parametric equations

$$
x=7 \sin (t)-4, \quad \text { and } \quad y=7 \cos (t)+3, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{3}
$$

(a) Show that the cartesian equation of C can be written as

$$
(x+a)^{2}+(y+b)^{2}=c,
$$

where a, b and c are integers which should be stated.
(b) Sketch the curve C on the given domain, clearly stating the endpoints of the curve.
(c) Find the length of C. Leave your answer in terms of π.
4. The diagram shows the curve C with parametric equations

The curve passes through the x-axis at P.
(a) Find the coordinate of P.
(b) Find the cartesian equation of the curve.
(c) Find the equation of the normal to the curve at the point $t=-1$.

Give your answer in the form $a x+b y+c=0$.
(d) Find the coordinates of the point where the normal meets C.
5. A stone is thrown from the top of a building. The path of the stone can be modelled using the parametric equations

$$
x=10 t, \quad \text { and } \quad y=8 t-4.9 t^{2}+10, \quad t \geq 0
$$

where x is the horizontal distance from the building in metres and y is the vertical height of the stone above the level ground in metres.
(a) Find the horizontal distance the stone travels before hitting the ground.
(b) Find the greatest vertical height.
6. A large arch is planned for a football stadium. The parametric equations of the arch are

$$
x=8(t+10), \quad \text { and } \quad y=100-t^{2}, \quad-10 \leq t \leq 10
$$

where x and y are distances in metres.
(a) Find the cartesian equation of the arch.
(b) Find the width of the arch.
(c) Find the greatest possible height of the arch.

