Pearson Edexcel

A Level Mathematics 9MA0

Unit Test
 6 Trignometry

Time allowed: 50 minutes

School:

Name:
Teacher:

Question	Points	Score
1	8	
2	5	
3	6	
4	8	
5	4	
6	7	
7	12	
Total:	50	

1. Figure 1 shows a logo comprised of a rhombus surrounded by two arcs. Arc $B A D$ has centre C and arc $B C D$ has centre A. Some of the dimensions of the logo are shown in the diagram.

Prove that the shaded area of the logo is $\frac{2}{3}(16 \pi-24 \sqrt{3})$.
2. (a) When θ is small, show that the expression $\frac{1+\sin (\theta)+\tan (2 \theta)}{2 \cos (3 \theta)-1}$ can be written as $\frac{1}{1-3 \theta}$.
(b) Hence write down the value of $\frac{1+\sin (\theta)+\tan (2 \theta)}{2 \cos (3 \theta)-1}$ when θ is small.
3. (a) Prove that

$$
\frac{\tan (x)-\sec (x)}{1-\sin (x)}=-\sec (x), \quad x \neq(2 n+1) \frac{\pi}{2}
$$

(b) Hence solve, in the interval $0 \leq x \leq 2 \pi$, the equation $\frac{\tan (x)-\sec (x)}{1-\sin (x)}=\sqrt{2}$.
4. Figure below shows the right-angled triangles and $\triangle A B C, \triangle A B D$ and $\triangle B C D$, with $A B=1$ and $\angle B A D=\theta$.

Prove that $1+\tan ^{2}(\theta)=\sec ^{2}(\theta)$.
5. Solve $6 \sin (\theta+60)=8 \sqrt{3} \cos (\theta)$ in the range $0 \leq \theta \leq 360^{\circ}$.

Round your answer to 1 decimal place.
6. (a) Prove that $(\sin (3 \theta)+\cos (3 \theta))^{2} \equiv 1+\sin (6 \theta)$.
(b) Use the result to solve, for $0 \leq \theta \leq \frac{\pi}{2}$, the equation $(\sin (3 \theta)+\cos (3 \theta))=\sqrt{\frac{2+\sqrt{2}}{2}}$.

Give your answer in terms of π. Check for extraneous solutions.
7. (a) Express $5 \cos (\theta)-8 \sin (\theta)$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0<\alpha<\pi$.

Write R in surd form and give the value of α correct to 4 decimal places. The temperature of a kiln, $T^{\circ} \mathrm{C}$, used to make pottery can be modelled by the equation

$$
T=1100+5 \cos \left(\frac{x}{3}\right)-8 \sin \left(\frac{x}{3}\right),
$$

for $0 \leq x \leq 72$, where x is the time in hours since the pottery was placed in the kiln.
(b) Calculate the maximum value of T predicted by this model and the value of x, to 2 decimal places, when this maximum first occurs.
(c) Calculate the times during the first 24 hours when the temperature is predicted, by this model, to be exactly $1097^{\circ} \mathrm{C}$.

