Pearson Edexcel

A Level Mathematics 9MA0

Unit Test
3 Functions Modelling

Time allowed: 50 minutes

School:

Name:
Teacher:

Question	Points	Score
1	10	
2	6	
3	7	
4	6	
5	9	
6	8	
7	4	
Total:	50	

1. $f(x)=|2 x+3|-4, x \in \mathbb{R}$
(a) Sketch the graph of $y=f(x)$, labelling its vertex and any points of intersection with the coordinate axes.
(b) Find the coordinates of the points of intersection of

$$
y=|2 x+3|-4 \quad \text { and } \quad y=-\frac{1}{4} x+2
$$

2. The functions p and q are defined by

$$
p: x \rightarrow x^{2} \quad \text { and } \quad q: x \rightarrow 5-2 x
$$

(a) Given that $p q(x)=q p(x)$, show that

$$
3 x^{2}-10 x+10=0
$$

(b) Explain why $3 x^{2}-10 x+10=0$ has no real solutions.
3. The functions f and g are defined by

$$
f(x)=\mathrm{e}^{2 x}+4, x \in \mathbb{R} \quad \text { and } \quad g(x)=\ln (x+1), x \in \mathbb{R}, x>-1
$$

(a) Find $f g(x)$ and state its range.
(b) Solve $f g(x)=85$.
4. The function $g(x)$ is defined by

$$
g(x)=x^{2}-8 x+7, x \in \mathbb{R}, x>4
$$

Find $g^{-1}(x)$ and state its domain and range.
5. The diagram shows the graph of $h(x)$.

The points $A(-4,3)$ and $B(2,-6)$ are turning points on the graph and $C(0,-5)$ is the y-intercept. Sketch on separate diagrams, the graphs of
(a) $y=|f(x)|$.
(b) $y=f(|x|)$.
(c) $y=2 f(x+3)$.

Where possible, label clearly the transformations of the points A, B and C on your new diagrams and give their coordinates.
6. The diagram shows a sketch of part of the graph $y=f(x)$ where

$$
f(x)=3|x-4|-5
$$

(a) State the range of f.
(b) Given that $f(x)=-\frac{1}{3} x+k$, where k is a constant has two distinct roots, state the possible values of k.
7. The temperature of a mug of coffee at time t can be modelled by the equation

$$
T(t)=T_{R}\left(90-T_{R}\right) \mathrm{e}^{-\frac{1}{20} t}
$$

where $T(t)$ is the temperature, in ${ }^{\circ} \mathrm{C}$, of the coffee at time t minutes after the coffee was poured into the mug and T_{R} is the room temperature in ${ }^{\circ} \mathrm{C}$.
(a) Using the equation for this model, explain why the initial temperature of the coffee is independent of the initial room temperature.
(b) Calculate the temperature of the coffee after 10 minutes if the room temperature is $20^{\circ} \mathrm{C}$.

