Pearson Edexcel Level 3

 GCE Mathematics 9MA0
Practice Paper C

Pure Mathematics

Time allowed: 2 hours

Centre:

Name:
Teacher:

Question	Points	Score
1	6	
2	5	
3	6	
4	4	
5	5	
6	4	
7	5	
8	7	
9	6	
10	5	
11	6	
12	6	
13	6	
14	4	
15	13	
16	12	
Total:	100	

1.

$$
\frac{18 x^{2}-98 x+78}{(x-4)^{2}(3 x+1)}=\frac{A}{x-4}+\frac{B}{(x-4)^{2}}+\frac{C}{3 x+1}, \quad x>4 .
$$

Find the values of the constants A, B and C.
\qquad
2. A curve C has equation $4^{x}=2 x y$ for $x>0$.

Find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point C with coordinates $(2,4)$.
\qquad
3. (a) Show that

$$
\cos (7 x)+\cos (3 x)=2 \cos (5 x) \cos (2 x)
$$

by expanding $\cos (5 x+2 x)$ and $\cos (5 x-2 x)$ using the compound-angle formulae.
(b) Hence find $\int \cos (5 x) \cos (2 x) \mathrm{d} x$.
\qquad
4. The temperature of a mug of coffee at time t can be modelled by the equation

$$
T(t)=T_{R}+\left(90-T_{R}\right) \mathrm{e}^{-\frac{1}{20} t}
$$

where $T(t)$ is the temperature, in ${ }^{\circ} \mathrm{C}$, of the coffee at time t minutes after the coffee was poured into the mug and T_{R} is the room temperature in ${ }^{\circ} \mathrm{C}$.
(a) Using the equation for this model, explain why the initial temperature of the coffee is independent of the initial room temperature.
(b) Calculate the temperature of the coffee after 10 minutes if the room temperature is $20^{\circ} \mathrm{C}$.
\qquad

5．Prove by contradiction that if n is odd，$n^{3}+1$ is even．
\qquad
\qquad \longrightarrow 回品回
6. A curve C has parametric equation

$$
x=\sec ^{2}(t)+1, \quad y=2 \sin (t), \quad-\frac{\pi}{4} \leq t \leq \frac{\pi}{4}
$$

Show that a cartesian equation of C is $y=\sqrt{\frac{8-4 x}{1-x}}$ for a suitable domain which should be stated.
\qquad
7. An infinite geometric series has first four terms $1-4 x+16 x^{2}-64 x^{3}+\ldots$. The series is convergent.
(a) Find the set of possible values of x for which the series converges.
(b) Given that

$$
\sum_{r=1}^{\infty}(-4 x)^{r-1}=4
$$

calculate the value of x.
\qquad
8.

$$
f(x)=2-3 \sin ^{3}(x)-\cos (x),
$$

where x is in radians.
(a) Show that $f(x)=0$ has a root α between $x=1.9$ and $x=2.0$.
(b) Using $x_{0}=1.95$ as a first approximation, apply the Newton-Raphson procedure once to $f(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
\qquad
9. Given that $(b-a) i-2 a b c j+2 k=10 i-96 j+(7 a+5 b) k$, find the values of a, b and c.
\qquad
\qquad \longrightarrow 回 回
10. Use proof by contradiction to show that there are no positive integer solutions to the statement $x^{2}-y^{2}=1$.
\qquad
11. The function $g(x)$ is defined by $g(x)=x^{2}-8 x+7, x \in \mathbb{R}, x>4$.

Find $g^{-1}(x)$ and state its domain and range.
\qquad
12.

$$
f(x)=\frac{4 x^{2}+x-23}{(x-3)(4-x)(x+5)}, \quad x>4 .
$$

Given that $f(x)$ can be expressed in the form

$$
\frac{A}{x-3}+\frac{B}{4-x}+\frac{C}{x+5},
$$

find the values of A, B and C.
\qquad
13. The curve C has equation $y=x^{3}+6 x^{2}-12 x+6$.
(a) Show that C is concave on the interval $[-5,-3]$.
(b) Find the coordinates of the point of inflection.
\qquad
\qquad \longrightarrow 回
14. Find

$$
\int_{\frac{\pi}{12}}^{\frac{\pi}{8}} \sin (4 x)(1-\cos (4 x))^{3} \mathrm{~d} x .
$$

15.

$$
\frac{4 x^{2}-4 x-9}{(2 x+1)(x-1)} \equiv A+\frac{B}{2 x+1}+\frac{C}{x-1} .
$$

(a) Find the values of the constants A, B and C.
(b) Hence, or otherwise, expand $\frac{4 x^{2}-4 x-9}{(2 x+1)(x-1)}$ in ascending powers of x, as far as the x^{2} term.
(c) Explain why the expansion is not valid for $x=\frac{3}{4}$.
\qquad
16. A large cylindrical tank has radius 40 m . Water flows into the cylinder from a pipe at a rate of $4000 \pi \mathrm{~m}^{3} \mathrm{~min}^{-1}$. At time t, the depth of water in the tank is $h \mathrm{~m}$. Water leaves the bottom of the tank through another pipe at a rate of $50 \pi h \mathrm{~m}^{3} \mathrm{~min}^{-1}$.
(a) Show that t minutes after water begins to flow out of the bottom of the cylinder

$$
160 \frac{\mathrm{~d} h}{\mathrm{~d} t}=400-5 h
$$

(b) When $t=0 \mathrm{~min}, h=50 \mathrm{~m}$. Find the exact value of t when $h=60 \mathrm{~m}$.
\qquad

