## Pearson Edexcel AS Mathematics 8MA0

## Unit Test 1 Algebra Functions

## Time allowed: 50 minutes

## School:

Name:

## Teacher:

How I can achieve better:

| Question | Points | Score |
| :---: | :---: | :---: |
| 1 | 4 |  |
| 2 | 8 |  |
| 3 | 9 |  |
| 4 | 12 |  |
| 5 | 5 |  |
| 6 | 4 |  |
| 7 | 50 |  |
| Total: |  |  |

1. Simplify $\frac{6 \sqrt{3}-4}{8-\sqrt{3}}$, giving your answer in the form $p \sqrt{3}-q$, where $p$ and $q$ are positive rational numbers.
2. 

$$
\mathrm{f}(x)=x^{2}-(k+8) x+(8 k+1)
$$

(a) Find the discriminant of $\mathrm{f}(x)$ in terms of $k$ giving your answer as a simplified quadratic.
(b) If the equation $\mathrm{f}(x)=0$ has two equal roots, find the possible values of $k$.
(c) Show that when $k=8, \mathrm{f}(x)>0$ for all values of $x$.
3. A stone is thrown from the top of a cliff. The height h , in metres, of the stone above the ground level after t seconds is modelled by the function $\mathrm{h}(t)=115+12.25 t-4.9 t^{2}$.
(a) Give a physical interpretation of the meaning of the constant term 115 in the model.
(b) Write $\mathrm{h}(t)$ in the form $A-B(t-c)^{2}$, where $A, B$ and $C$ are constants to be found.
(c) Using your answer to part $b$, or otherwise, find, with justification
i. the time taken after the stone is thrown for it to reach ground level
ii. the maximum height of the stone above the ground and the time after which this maximum height is reached.
4.

$$
\mathrm{p}(x)=3-\frac{1}{2} x, \quad \mathrm{q}(x)=x^{2}-10 x-20
$$

(a) Solve the equation $\mathrm{q}(x)=0$. Write your answer in the form $a \pm 3 \sqrt{b}$ where $a$ and $b$ are integers to be found.
(b) Sketch the graphs of $y=\mathrm{p}(x)$ and $y=\mathrm{q}(x)$ on the same set of axes. Label all points where the curves intersect the coordinate axes.
(c) Use an algebraic method to find the coordinates of any point of intersection of the graphs $y=\mathrm{p}(x)$ and $y=\mathrm{q}(x)$.
(d) Write down, using set notation, the set of values of $x$ for which $\mathrm{p}(x)<\mathrm{q}(x)$.
5.

$$
\mathrm{g}(x)=\frac{4}{x-6}+5, x \in \mathbb{R}
$$

Sketch the graph $y=\mathrm{g}(x)$. Label any asymptotes and any points of intersection with the coordinate axes.
6.

$$
\mathrm{f}(x)=x^{3}-3 x-2 .
$$

The figure below shows a sketch of part of the curve with equation $y=\mathrm{f}(x)$.

(a) On a separate set of axes, sketch the curve with equation $y=\mathrm{f}(2 x)$ showing the location and coordinates of the images of points $A, B, C$ and $D$.
(b) On a separate set of axes, sketch the curve with equation $y=\mathrm{f}(-x)$ showing the location and coordinates of the images of points $A, B, C$ and $D$.
7. (a) On a coordinate grid ( $x$ and $y$ axes running from -6 to 6 ), shade the region comprising all points whose coordinates satisfy the inequalities $y \leq 2 x+5,2 y+x \leq 6$ and $y \geq 2$.
(b) Work out the area of the shaded region.

